11 research outputs found

    A M\"untz-Collocation spectral method for weakly singular volterra integral equations

    Get PDF
    In this paper we propose and analyze a fractional Jacobi-collocation spectral method for the second kind Volterra integral equations (VIEs) with weakly singular kernel (x−s)−μ,0<μ<1(x-s)^{-\mu},0<\mu<1. First we develop a family of fractional Jacobi polynomials, along with basic approximation results for some weighted projection and interpolation operators defined in suitable weighted Sobolev spaces. Then we construct an efficient fractional Jacobi-collocation spectral method for the VIEs using the zeros of the new developed fractional Jacobi polynomial. A detailed convergence analysis is carried out to derive error estimates of the numerical solution in both L∞L^{\infty}- and weighted L2L^{2}-norms. The main novelty of the paper is that the proposed method is highly efficient for typical solutions that VIEs usually possess. Precisely, it is proved that the exponential convergence rate can be achieved for solutions which are smooth after the variable change x→x1/λx\rightarrow x^{1/\lambda} for a suitable real number λ\lambda. Finally a series of numerical examples are presented to demonstrate the efficiency of the method

    A linear adaptive second-order backward differentiation formulation scheme for the phase field crystal equation

    Full text link
    In this paper, we present and analyze a linear fully discrete second order scheme with variable time steps for the phase field crystal equation. More precisely, we construct a linear adaptive time stepping scheme based on the second order backward differentiation formulation (BDF2) and use the Fourier spectral method for the spatial discretization. The scalar auxiliary variable approach is employed to deal with the nonlinear term, in which we only adopt a first order method to approximate the auxiliary variable. This treatment is extremely important in the derivation of the unconditional energy stability of the proposed adaptive BDF2 scheme. However, we find for the first time that this strategy will not affect the second order accuracy of the unknown phase function Ï•n\phi^{n} by setting the positive constant C0C_{0} large enough such that C_{0}\geq 1/\Dt. The energy stability of the adaptive BDF2 scheme is established with a mild constraint on the adjacent time step radio \gamma_{n+1}:=\Dt_{n+1}/\Dt_{n}\leq 4.8645. Furthermore, a rigorous error estimate of the second order accuracy of Ï•n\phi^{n} is derived for the proposed scheme on the nonuniform mesh by using the uniform H2H^{2} bound of the numerical solutions. Finally, some numerical experiments are carried out to validate the theoretical results and demonstrate the efficiency of the fully discrete adaptive BDF2 scheme.Comment: 21 pages, 5 figure

    A linear second-order maximum bound principle-preserving BDF scheme for the Allen-Cahn equation with general mobility

    Full text link
    In this paper, we propose and analyze a linear second-order numerical method for solving the Allen-Cahn equation with general mobility. The proposed fully-discrete scheme is carefully constructed based on the combination of first and second-order backward differentiation formulas with nonuniform time steps for temporal approximation and the central finite difference for spatial discretization. The discrete maximum bound principle is proved of the proposed scheme by using the kernel recombination technique under certain mild constraints on the time steps and the ratios of adjacent time step sizes. Furthermore, we rigorously derive the discrete H1H^{1} error estimate and energy stability for the classic constant mobility case and the L∞L^{\infty} error estimate for the general mobility case. Various numerical experiments are also presented to validate the theoretical results and demonstrate the performance of the proposed method with a time adaptive strategy.Comment: 25pages, 5 figure

    Highly efficient schemes for time fractional Allen-Cahn equation using extended SAV approach

    Get PDF
    In this paper, we propose and analyze high order efficient schemes for the time fractional Allen-Cahn equation. The proposed schemes are based on the L1 discretization for the time fractional derivative and the extended scalar auxiliary variable (SAV) approach developed very recently to deal with the nonlinear terms in the equation. The main contributions of the paper consist in: 1) constructing first and higher order unconditionally stable schemes for different mesh types, and proving the unconditional stability of the constructed schemes for the uniform mesh; 2) carrying out numerical experiments to verify the efficiency of the schemes and to investigate the coarsening dynamics governed by the time fractional Allen-Cahn equation. Particularly, the influence of the fractional order on the coarsening behavior is carefully examined. Our numerical evidence shows that the proposed schemes are more robust than the existing methods, and their efficiency is less restricted to particular forms of the nonlinear potentials

    A linear doubly stabilized Crank-Nicolson scheme for the Allen-Cahn equation with a general mobility

    Full text link
    In this paper, a linear second order numerical scheme is developed and investigated for the Allen-Cahn equation with a general positive mobility. In particular, our fully discrete scheme is mainly constructed based on the Crank-Nicolson formula for temporal discretization and the central finite difference method for spatial approximation, and two extra stabilizing terms are also introduced for the purpose of improving numerical stability. The proposed scheme is shown to unconditionally preserve the maximum bound principle (MBP) under mild restrictions on the stabilization parameters, which is of practical importance for achieving good accuracy and stability simultaneously. With the help of uniform boundedness of the numerical solutions due to MBP, we then successfully derive H1H^{1}-norm and L∞L^{\infty}-norm error estimates for the Allen-Cahn equation with a constant and a variable mobility, respectively. Moreover, the energy stability of the proposed scheme is also obtained in the sense that the discrete free energy is uniformly bounded by the one at the initial time plus a {\color{black}constant}. Finally, some numerical experiments are carried out to verify the theoretical results and illustrate the performance of the proposed scheme with a time adaptive strategy

    Energy regularized models for logarithmic SPDEs and their numerical approximations

    Full text link
    Understanding the properties of the stochastic phase field models is crucial to model processes in several practical applications, such as soft matters and phase separation in random environments. To describe such random evolution, this work proposes and studies two mathematical models and their numerical approximations for parabolic stochastic partial differential equation (SPDE) with a logarithmic Flory--Huggins energy potential. These multiscale models are built based on a regularized energy technique and thus avoid possible singularities of coefficients. According to the large deviation principle, we show that the limit of the proposed models with small noise naturally recovers the classical dynamics in deterministic case. Moreover, when the driving noise is multiplicative, the Stampacchia maximum principle holds which indicates the robustness of the proposed model. One of the main advantages of the proposed models is that they can admit the energy evolution law and asymptotically preserve the Stampacchia maximum bound of the original problem. To numerically capture these asymptotic behaviors, we investigate the semi-implicit discretizations for regularized logrithmic SPDEs. Several numerical results are presented to verify our theoretical findings.Comment: 26 pages, 5 figure

    Energy stable and maximum bound principle preserving schemes for the Q-tensor flow of liquid crystals

    Full text link
    In this paper, we propose two efficient fully-discrete schemes for Q-tensor flow of liquid crystals by using the first- and second-order stabilized exponential scalar auxiliary variable (sESAV) approach in time and the finite difference method for spatial discretization. The modified discrete energy dissipation laws are unconditionally satisfied for both two constructed schemes. A particular feature is that, for two-dimensional (2D) and a kind of three-dimensional (3D) Q-tensor flows, the unconditional maximum-bound-principle (MBP) preservation of the constructed first-order scheme is successfully established, and the proposed second-order scheme preserves the discrete MBP property with a mild restriction on the time-step sizes. Furthermore, we rigorously derive the corresponding error estimates for the fully-discrete second-order schemes by using the built-in stability results. Finally, various numerical examples validating the theoretical results, such as the orientation of liquid crystal in 2D and 3D, are presented for the constructed schemes

    Fabrication and Applications of Multi-Fluidic Electrospinning Multi-Structure Hollow and Core–Shell Nanofibers

    No full text
    Recently, electrospinning (ESP) has been widely used as a synthetic technology to prepare nanofibers with unique properties from various raw materials. The applications of functionalized nanofibers have gradually developed into one of the most exciting topics in the field of materials science. In this review, we focus on the preparation of multi-structure fibrous nanomaterials by means of multi-fluidic ESP and review the applications of multi-structure nanofibers in energy, catalysis, and biology. First, the working principle and process of ESP are introduced; then, we demonstrate how the microfluidic concept is combined with the ESP technique to the multi-fluidic ESP technique. Subsequently, the applications of multi-structure nanofibers in energy (Li+/Na+ batteries and Li–S batteries), hetero-catalysis, and biology (drug delivery and tissue engineering) are introduced. Finally, challenges and future directions in this emerging field are summarized

    CoS2-TiO2@C Core-Shell fibers as cathode host material for High-Performance Lithium-Sulfur batteries

    No full text
    Owing to the low cost, high energy density, and high theoretical specific capacity, lithium-sulfur batteries have been deemed as a potential choice for future energy storage devices. However, they also have suf-fered from several scientific and technical issues including low conductivity, polysulfides migration, and volume changes. In this study, CoS2-TiO2@carbon core-shell fibers were fabricated through combination of coaxial electrospinning and selective vulcanization method. The core-shell fibers are able to efficiently host sulfur, confine polysulfides, and accelerate intermediates conversion. This electrode delivers an ini-tial specific capacity of 1181.1 mAh g(-1) and a high capacity of 736.5 mAh g(-1) after 300 cycles with high coulombic efficiency over 99.5% (capacity decay of 0.06% per cycle). This strategy of isolating interactant and selective vulcanization provides new ideas for effectively constructing heterostructure materials for lithium-sulfur batteries. (c) 2021 Elsevier Inc. All rights reserved
    corecore